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Abstract. Soil salinity is a major environmental problem that causes significant damage to 

agricultural production, especially in the context of climate change and rising sea levels. The problem 

is increasingly frequent in the Red River Delta, one of Vietnam’s rice granaries. Monitoring soil 

salinity – in coastal regions in general and the Red River Delta in particular – can support decision-

makers or farmers in proposing effective strategies to reduce the impacts of soil salinity and ensure 

food security. The objective of this study was to construct soil salinity distribution maps for the Red 

River Delta using machine learning and remote sensing – namely gradient boosting (GB). The 

statistical indices RMSE, MAE, and R² were used to evaluate the accuracy of the GB model. The 

results showed that this study was successfully able to build the GB model with an accuracy of 

R²=0.69. The mapping showed that coastal regions have the highest electrical conductivity value 

(More than 3 mS/cm). The results of this study may prove important as tools in the selection of 

appropriate types of agricultural production to ensure food security in the region, especially in the 

context of climate change. 
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1.INTRODUCTION 
 

Soil salinity is a pervasive and dangerous ecological challenge, affecting agricultural 

production and sustainable land development, as well as ecosystem balance, particularly in coastal 

regions (Duan, Sun et al. 2025, Thangarasu, Mengash et al. 2025). The process of salinization leads 

to an increase in the accumulation of soluble salts in the soil profile, disrupting the ability of plants 

to access water and nutrients (Zhang, Fan et al. 2025). This challenge is increasingly serious due to 

climate change, rising sea levels, and poor irrigation management (Hailegnaw, Awoke et al. 2025, 

Zhou, Huang et al. 2025). According to the first global estimate in fifty years, 10.7% of land is 

affected by salinity. This has direct consequences for agriculture and food production, with losses of 

up to 70% of crops – particularly rice, beans, sugarcane, and potatoes. Therefore, monitoring and 

assessing soil salinity are considered essential for achieving the United Nations Sustainable 

Development Goals, as well as for supporting those engaged in agricultural planning to reduce the 

effects of salinization. 

It is now considered important to characterize and monitor the evolution of affected soils. 

Traditionally, salinity has been measured using in situ methods, particularly measurement of 

electromagnetic conductivity (Nguyen, Dang et al. 2025, Nguyen, Pham et al. 2025). Although this 

technique is widely developed in precision agriculture for characterizing the spatial variability of 
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salinity, it is limited when measuring salinity over large areas. Furthermore, this method is very 

expensive, labor-intensive, and time-consuming. Therefore, more effective methods must be 

developed for assessing spatial and temporal salinity efficiently and quickly. To limit the 

shortcomings of the traditional method, in recent years, remote sensing technology has been used to 

monitor environmental problems in general and soil salinity in particular (Metternicht and Zinck 

2003, Wu, Mhaimeed et al. 2014, Gorji, Sertel et al. 2017, Thangarasu, Mengash et al. 2025). Radar 

and optical techniques have proven effective in providing global information, particularly in 

monitoring the soil surface (Lhissoui, El Harti et al. 2014, Jiang and Shu 2019, Taghadosi, Hasanlou 

et al. 2019, Wu, Muhaimeed et al. 2019). However, optical remote sensing products are limited due 

to cloud cover, and they depend on solar radiation. Radar sensors are considered reliable tools for 

monitoring the soil surface under any weather and time conditions. For agricultural soil, the radar 

signal is mainly dependent on surface parameters; for example, soil salinity coupled with humidity 

influences the dielectric properties of soils and consequently the radar signal. In addition, with the 

explosion of remote sensing data types, particularly in terms of variety, resolution and size, it is 

necessary to have robust methods to process these data accurately. 

For these reasons, several researchers have integrated data from remote sensing and the Drive 

model. This model works mainly by learning the relationships between salinity locations and causes. 

They include statistical models and machine learning models. Although statistical models have been 

shown to be suitable for monitoring salinity in several regions around the world (Douaik, Van 

Meirvenne et al. 2007, Fallah Shamsi, Zare et al. 2013), the nonlinear problem is considered a major 

issue when using this model. This is particularly true in the context of climate change and sea level 

rise, which make the soil salinity problem increasingly complex and difficult to predict. Therefore, in 

recent years, some researchers have used machine learning to monitor soil salinity in coastal regions, 

including methods such as support vector machine (Guan, Wang et al. 2013, Jiang, Rusuli et al. 2019), 

random forest (Fathizad, Ardakani et al. 2020, Wang, Yang et al. 2021), bagging (Das, Rathore et al. 

2022), and XGBoost (Zarei, Hasanlou et al. 2021, Aksoy, Sertel et al. 2024). Machine learning 

algorithms can analyze large volumes of data from different sources, including satellite images and 

in situ data, to estimate soil salinity. Studies have shown this method to have higher accuracy than 

traditional methods. Moreover, machine learning models can improve over time thanks to their 

continuous learning capacity and the updating of new data. However, a number of previous studies 

have that as regions have different natural and social conditions, no model can predict problems in 

all regions. Therefore, it is necessary to select models that adapt to each region of study.  

The objective of this study was the monitoring of soil salinity in the Red River Delta using 

machine learning and Sentinel 2A data, specifically with the Gradient Boosting algorithm. The delta 

is the country’s second most important rice granary, after the Mekong Delta, and so plays a key role 

in the agricultural development of Vietnam. It accounts for about 18% of the country's agricultural 

land area and 15-20% of the aquaculture land area. However, in recent years, the delta has been 

severely affected by saline intrusion, impacting agricultural development and food security in the 

region and the wider country. Monitoring this intrusion will help inform effective solutions to 

minimize the impact of this situation. 

 

2.MATERIAL AND METHODOLOGY 
 2.1. Study area  
 

Nam Dinh is a coastal province located in the Red River Delta, at the coordinates of 19054' 

to 20040' North latitude and 105055' to 106045' East longitude (Figure 1). The area has relatively flat 

terrain, mainly composed of lowland plains and coastal plains. The terrain gradually decreases from 

northwest to southeast, with an average elevation of +2m to +3m. Lowland plains account for most 

of the natural area of the province. It is also an area with great potential for intensive agricultural 

development, the processing and mechanical industries, and more traditional industry.  

The 72 km-long coastline is fairly flat. The coastal plain has fertile land and great potential 

for economic development, especially in aquaculture and fisheries. Nam Dinh has a tropical monsoon 
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climate. Average annual precipitation is 1750–1800 mm. The rainy season lasts from May to October, 

with the dry season from November to February. The study area is located between the downstream 

reaches of two major rivers in the north of the delta: the Red River and the Day River. The tide in the 

Nam Dinh region is diurnal. The average tidal range is 1.6 to 1.7 m, the highest being 3.31 m and the 

lowest being 0.11 m. 

Due to its geographical location, the province is affected by storms and tropical depressions, 

with an average of 4 to 6 storms per year. These phenomena not only cause damage to the region's 

socio-economic situation but also increase saltwater intrusion in coastal areas such as Hai Hau and 

Truc Ninh, particularly in the context of climate change. Changes in climatic and hydrological 

conditions, combined with the degradation of the dike and lock system, have made saline intrusion 

increasingly serious in Nam Dinh province in general and in coastal areas in particular. 

 
Figure 1. Location of study area 

 

 

2.2. Soil salinity collection 
 

In this study, 72 soil salinity points were collected in August 2024 in Hai Hau and Truc Ninh 

districts. We chose the 5-point method for salinity sampling, which means that 4 sub-samples were 

taken around the main sample and the salinity of each was the average salinity of the 5. After boiling, 

the samples were sealed in plastic bags and sent to the laboratory for analysis. They were cleaned of 

impurities before being ground and mixed with distilled water at a ratio of 1:5 (meaning 1 g of soil 

was mixed with 5 ml of distilled water). The soil and water mixture was then mixed in a thermal 

oscillator for about 30 minutes to dissolve the soil in the water. The mixture was then allowed to 

stand, for the liquid to be extracted, and the EC was measured using a water quality analyzer. Finally, 

56 soil samples combined with influencing variables were used as input data for the machine learning 

model. These data were divided into 2 parts: 70% of the data used to build the GB model and 30% to 

evaluate the model’s accuracy. 
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2.3.Conditioning factors 
Conditioning factors are essential data when using machine learning to monitor soil salinity, 

because machine learning is based on examining the relationships between salinity locations and 

causes to estimate salinity. In this study, conditioning factors were collected from different sources, 

such as remote sensing data and data from the Ministry of Natural Resources and the Environment.  

20 conditioning factors were selected to build the machine learning model. These factors were divided 

into three main groups: topographic factors (altitude, aspect, curvature, slope), hydrometeorology 

factors (distance to river, rainfall), vegetation groups (NDVI, EVI, ENDVI, RVI, SAVI, GDVI), 

salinity indices (S1, S2, S3, S5, S6, SI, SI1, SI2, SI3, SI4) and intensity indexes (Int1, Int2). The 

topographic factors (altitude, aspect, curvature, slope) were extracted by the topographic map with 

the scale of 1:50,000 (available at the Ministry of Natural Resources and Environment). 5000 / 5000. 

The groups focusing on vegetation, salinity, intensity, and brightness were extracted from Sentinel 

2A imagery from 2024. Annual precipitation was downloaded by https://chrsdata.eng.uci.edu/. 

Topographic factors (aspect, altitude, slope, curvature) directly affect the salinity 

accumulation process and hydrological flow. In particular, altitude affects the salt accumulation 

capacity in the soil: low-lying areas are susceptible to saltwater intrusion from the sea to the mainland, 

especially during the dry season when river levels drop and sea levels rise. In addition, low-lying 

areas have poor drainage, increasing the risk of salt accumulation in the soil (Akramkhanov, Martius 

et al. 2011, Shahrayini and Noroozi 2022). Aspect is an important topographical factor that greatly 

affects saltwater intrusion, as it relates to soil moisture, which indirectly affects the salinity intrusion 

process (Oster and Shainberg 2001). Curvature is an essential element in calculating and monitoring 

saltwater intrusion, since this factor affects accumulation and surface flow: saltwater often 

concentrates in areas of low curvature. Slope directly affects drainage capacity (Triki Fourati, Bouaziz 

et al. 2017); steep slopes often have better drainage, which minimizes saltwater accumulation on the 

surface. Conversely, areas with low slopes increase the potential for salt accumulation in the soil 

(Yahiaoui, Douaoui et al. 2015, O’Brien, Almaraz et al. 2019). 

Precipitation directly affects salinity intrusion in any region of the world. High rainfall reduces 

the effects of salt concentrations in the soil through leaching. At the same time, low rainfall reduces 

river flow, allowing salt water to penetrate deeper inland (Isidoro and Grattan 2011, Dasgupta, 

Hossain et al. 2015). 

Distance to river plays an important role in assessing and monitoring soil salinity, particularly 

in coastal regions and deltas. Because salt water can enter rivers from estuaries, affecting soil quality, 

the closer the regions are to the river, the more severe the effects of salinity are (Zhao, Feng et al. 

2016, Liu, Wu et al. 2023).  

The factors relating to vegetation are important in monitoring saltwater intrusion because they 

reflect environmental conditions at the surface. In this case, NDVI was used to assess the level of 

vegetation cover in an area. Areas with a high NDVI index often have a high vegetation density, 

which indicates that the vegetation is well-developed, helping to maintain soil moisture and reduce 

salt intrusion (Aldakheel 2011).  

Similarly, ENDVI reflects the extent of vegetation cover, especially in areas with low soil 

moisture or those affected by adverse environmental conditions such as salinity intrusion. They 

determine the growth status of vegetation under changing soil and climate conditions. Areas with a 

high ENDVI index represent the vegetation growing in that area. This indicates that these areas are 

less affected by saltwater intrusion (Wu, Jia et al. 2021).  

EVI provides information about the growth status of plants. High EVI values indicate good 

vegetation growth, suggesting that these areas are less affected by salinity intrusion. A low EVI shows 

that plants are not growing, which demonstrates the level of influence of salt intrusion (Lobell, Lesch 

et al. 2010, Ivushkin, Bartholomeus et al. 2017).  

RVI and SAVI provide information on the extent of vegetation growth, which helps assess 

the extent of salinity intrusion affecting an area. Generally, saltwater intrusion reduces the ability of 

plants to absorb nutrients and water. This results in poor plant growth. Therefore, areas with high 
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RVI and SAVI values show that the vegetation in that area is well developed, indicating that this area 

is less affected by salinity intrusion (Teshaev, Mamadaliyev et al. 2020, Zhu, Sun et al. 2021).  

GDVI reflects plant health, which is indispensable for assessing and monitoring salinity intrusion. 

GDVI is inversely proportional to salinity intrusion, meaning that areas with high salinity have low 

GDVI values, resulting in poor plant health (Wu, Mhaimeed et al. 2014). 

Salinity-related factors play an important role in assessing and monitoring saltwater intrusion 

in any area because they reflect changes in surface conditions and vegetation in an area using near-

infrared, short-infrared, red, and blue wavelengths. These indices assess the extent to which salinity 

intrusion affects plant growth. When the values of the S1, S2, S3, S5, and S6 indices are low, it means 

that the vegetation in that area is affected by salinity intrusion (Wang, Chen et al. 2019, Wang, Peng 

et al. 2021). Similarly, the SI, SI1, SI2, SI3, and SI4 indices are often used to assess plant health and 

soil moisture. When these indices are high, it indicates that the soil is affected by severe salinity 

intrusion, causing poor plant growth and reduced soil moisture. Assessing salinity intrusion through 

plant health and soil moisture provides an overview of the status of salinity intrusion (Wang, Chen et 

al. 2019, Naimi, Ayoubi et al. 2021). 

The indices Int1 and Int2 reflect the intensity of environmental factors affecting saltwater 

intrusion. Int1 provides comprehensive information on the light reflected off the Earth's surface, 

which is influenced by factors such as soil moisture and texture. With this information, it is possible 

to indirectly assess the level of impact of saline intrusion on an area. Int2 reflects the reflectance 

properties of the soil in an area through the intensity of the visible spectrum. This index assesses the 

condition and surface characteristics of an area, as well as the vegetation growth index. High Int 2 

values reflect good vegetation growth and the area is less affected by salinity intrusion (Sidike, Zhao 

et al. 2014, Zhang, Fan et al. 2022). 

The brightness index (BI) reflects the brightness of an area calculated by combining 

reflectance values from the visible and near-infrared bands. Areas with high brightness have strong 

surface reflections, indicating that the area has little vegetation or low humidity. This shows that they 

may be significantly affected by saltwater intrusion (Yahiaoui, Douaoui et al. 2015). 

 

2.4.Methodology 
The methodology used to construct the soil salinity map in this study was divided into three 

main tasks: i) data collection, ii) GB model construction, iii) evaluation of the proposed model 

accuracy, and iv) construction and analysis of the soil salinity map (Figure 2). 

i) Data collection: Databases were divided into two types: soil salinity points and conditioning factors. 

Salinity points were collected from the field mission in January 2025, during the dry season. 

Conditioning factors included five groups of factors: topographic, vegetation, salinity, intensity, and 

brightness. The databases were divided into two groups: one was used to construct the GB model and 

the other to evaluate the model. 

ii) Machine learning model construction: the machine learning model was built on the TensorFlow 

platform. The accuracy of the GB model depends on the adjustment of parameters such as max depth, 

learning rate, max feature, and random state. In this study, the trial-and-error method was used to 

optimize the model parameters. After several trials, the model performed better with the following 

parameters: n_estimators = 100, max_depth = 3, learning_rate = 0.15, loss = 'squared_error', criterion 

= 'friedman_mse', max_features = 'sqrt', random_state = None. 

iii) Performance evaluation of the proposed model: The statistical indices RMSE, MAE, and R²  were 

used to evaluate the performance of the GB model. These indices have been used in several previous 

studies.  

iv) Construction and analysis of the soil salinity map: After training and evaluating the machine 

learning models, the models were used to estimate salinity intrusion for the entire study area, 

including Hai Hau District and Truc Ninh District. This process was carried out by assigning 

influence factor values to all pixels in the study area, from which the model can calculate the salinity 

value at each pixel. 
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After calculating the salinity values at each pixel, these values were used to construct a soil 

salinity distribution map for the study area.  

 
Figure 2. Methodology used for soil salinity model 

 

2.5.Gradient boosting 
GB is a machine learning model based on the principle of boosting. This technique was 

developed based on the idea of progressively combining weak models, most often decision trees, to 

form a powerful predictive model by training a new model that successfully predicts the errors made 

by the original model (Natekin and Knoll 2013, Bentéjac, Csörgő et al. 2021). With this idea, for any 

predictive model, we can improve its accuracy by training a new predictor to predict its current errors. 

This process is repeated an arbitrary number of times to continuously improve the model's accuracy 

(Zhang and Haghani 2015). Gradient boosting machines consist of three main components: i) The 

loss function measures the difference between predicted values and actual values. ii) Base learners 

built sequentially, each focusing on correcting the errors made by the previous tree. iii) The additive 

model combines the predictions of all base learners to produce the final prediction (Ayyadevara 

2018). The GB model training process includes the following steps (Taieb and Hyndman 2014, Lusa 

2017): 

i) Model initialization: this process fits the base learner to the dataset to make an initial prediction. 

ii) Iteratively fitting weak learners: the model concentrates errors made by previous learners. 

iii) Calculating residuals: the difference is measured between the actual value and the current model's 

prediction. 

iv) Fitting a weak learner to the residuals: the learner attempts to correct the errors of the existing 

model by predicting the errors made by the previous model. 

v) Updating the model: this combines the existing model using a "weighted voting" system with the 

new learner. This is typically done by adding the new learner's predictions to the existing model, 

scaled by a learning rate. 

vi) Loss function optimization: a loss function measures the model's performance in predicting 

previous errors. 

Model assessment 

We used three statistical indices, namely RMSE, MAE, and R², to evaluate the accuracy of 

the GB model. Of the three, RMSE and MAE presented the differences between the model values 

and the realization value. The closer the value was to 0, the more perfect the model was. Meanwhile, 

the R2 value measures the quality of the correlation between soil salinity and conditioning factors. 

This gives, among other things, an indication of the reliability of the salinity estimation based on 

these factors. An R2 equal to 75% would mean that 75% of the variations in soil salinity could be 

explained by the conditioning factors.  
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3.RESULTS 
 

Conditioning factor analysis 

The selection of appropriate conditioning factors plays an important role in accurately 

estimating soil salinity because the accuracy of machine learning models depends on analyzing the 

correlation between conditioning factors and soil salinity. Previous studies used various methods to 

evaluate the importance of conditioning factors. For example, Zhang, Fu et al. (2023) used Pearson’s 

correlation coefficients to evaluate the importance of conditioning factors. The results showed that 

B6, B7, B10, B11, B4, B5, and SI, NDSI, ENDVI, GDVI are more important for soil salinity 

monitoring in Kenli district, located in Dongying City of Shandong Province in China. Habibi, 

Ahmadi et al. (2020) applied sensitivity analysis of the wrapper model to evaluate the importance of 

conditioning variables. The results showed that SI3, band 5, NDVI, TWI and LS were more important 

in defining the soil salinity in Farmlands of Saveh Plain in the north and northeast of Qom. Han, Ge 

et al. (2023) applied Pearson correlation analysis to select appropriate conditioning factors for a soil 

salinity model. The results showed that BI, VSSI, CRSI, EVI, RVI, SAVI were most impactful on 

soil salinity in the Songnen Plain of Da’an City.  

The importance of individual conditioning factors is clearly different in each region. In this 

study, we used random forest to select conditioning factors. The results showed that distance to river, 

ENDVI, RVI, and rainfall were the most important factors for the soil salinity in the Edu region, with 

RF values of 0.5, 0.23, 0.22, 0.19, respectively.  

The Red, Thai Binh, and Ninh Co rivers are the main sources of saline intrusion, especially 

during the dry season when the tide rises and the river water level decreases. Therefore, areas near 

rivers will be affected by saltwater intrusion, especially in low-lying areas. ENDVI and RVI are 

second in importance after distance to the river, as the study area is primarily devoted to rice 

cultivation. Thus, when affected by salinity intrusion, rice either cannot grow, or it grows poorly. 

This explains why the RF value is high after distance to the river. The importance of precipitation 

comes fourth; precipitation plays an important role in regulating soil salinity because it helps remove 

salts from the soil, especially in estuarine areas. Therefore, precipitation directly affects soil salinity. 

Aspect, curvature, S6, and SI2 did not influence soil salinity. It should be noted that the model used 

in this study was the statistical model; therefore, the relationships between salinity locations and 

conditioning factors are more important. The soil salinity in the Red River Delta in general, and in 

Hai Hau and Truc Ninh in particular, is influenced by distance to river, rainfall, RVI, and ENDVI 

(Figure 3). 

 
Figure 3. Importance of conditioning factors on the soil salinity model 
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Figure 4 and Table 1 present the performance of the GB model in estimating soil salinity in 

the study area. The results showed that the R2 value of the model was 0.69. This can be explained by 

the fact that 69% of the measured point values could be accurately predicted by the proposed model. 

In addition, this study used two other indices – RMSE and MAE – to evaluate the accuracy of the 

model. The results showed that, for the training data, the RMSE and MAE values reached 0.02 and 

0.04, while for the validation data, these values increased to 0.3 and 0.2. Overall, even though the 

model still needs improvement compared to some previous studies, the model in our study remains 

effective (Wang, Xue et al. 2020, Shi, Hellwich et al. 2021). 

 
Figure 4: R² value for the GB model 

Table 1: Model performance for soil salinity model 

Model Training dataset Validation dataset 

RMSE MAE R2 RMSE MAE R2 

GB 0.02 0.04 0.98 0.3 0.2 0.69 

 

Soil salinity mapping 

Figure 5 shows the distribution of EC values in the study area, which is considered a very 

important value in the assessment of salinity intrusion. It can be seen that coastal areas are strongly 

affected by saline intrusion with EC values greater than 3 mS/cm. Meanwhile, further inland, EC 

values decrease to less than 3. 

In deltaic areas in general and in the study area in particular, salinity intrusion is a natural 

process, but it is also affected by many other factors, such as agricultural production activities and 

unreasonable groundwater exploitation. This process affects the relationship between river water and 

seawater. The map shows the study area clearly divided into three zones: red, yellow, and green; 

salinity decreases from red to green. In red zones, EC values exceed 3; these are concentrated in 

coastal areas. This area is heavily affected by storms, sea level rise, tides, and water exploitation in 

the upper Red River basin. Therefore, in some areas, instead of growing rice, people work in 

aquaculture.  

As you move further inland, EC values decrease and become yellow. Based on field surveys 

conducted in 2024 and 2025, it can be seen that while the yellow areas can grow rice, rice yields have 

declined, and many areas have switched from growing rice to growing more salt-tolerant crops. The 

further inland you go, the more significantly salinity decreases. These areas focus on growing rice. 
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Figure 5. Soil salinity maping product by GB in the study area 

 

4.DISCUSSION 
 

The Red River Delta plays an important role in the socio-economic development of Vietnam, 

with its population of more than 20 million, of whom 66% of the workforce relies on agriculture and 

aquaculture. However, in recent years, the region has been strongly affected by drought and saltwater 

intrusion, especially in the context of climate change. This has seriously affected the food security of 

the whole country (Phan and Kamoshita 2020, Truc, Mihova et al. 2020). According to a report by 

the Ministry of Agriculture and Environment, the dry season flow on the Red River-Thai Binh River 

system has decreased sharply. Since 2001, the water level on the Red River in Hanoi from December 

to May is often 0.5 to 1.1 m lower than the average level of many years. The water flow downstream 

has decreased. Also, the water level of rivers in the coastal plains has dropped, combining with rising 

sea levels and high tides to cause saltwater intrusion to spread further into the area downstream. 

Therefore, research and monitoring of saline intrusion in the Red River Delta is necessary to support 

planners and farmers in choosing appropriate agricultural production types (Nguyen, Renaud et al. 

2019, Phan and Kamoshita 2020). 

In the delta, solutions to mitigate saline intrusion mainly focus on upgrading irrigation 

infrastructure systems such as sea dikes, river dikes and sluice systems. In addition, adaptation 

measures also include changes in agricultural production structures such as changing crop calendars 

and effectively managing irrigation systems (Nguyen, Kamoshita et al. 2017). Other activities include 
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planting mangroves or converting coastal rice fields affected by saline intrusion into aquaculture 

systems, which has been achieved by many households (Nguyen, Renaud et al. 2019, Phan and 

Kamoshita 2020). As the results show, in areas far from the sea, saline intrusion is not a problem; 

only a small number of some areas along the Red River are affected by salinity. Many households in 

this area have raised their fields with sand from the Red River to minimize saline intrusion. Many 

households have cultivated rice-vegetable systems, in which rice is mainly used for family 

consumption, while vegetable prices may determine whether to grow vegetables or other crops. When 

vegetable prices decrease, they switch to other crops with greater economic benefits (Linh, Linh et 

al. 2012, Nguyen, Kamoshita et al. 2017). 

In the middle areas, affected by moderate saline intrusion, many households often switch to 

fish or soft-shell turtle farming. Some households switch from rice cultivation to garden-pond-cage 

systems when salinity increases. Along coastal areas, households may switch from fish farming to 

shrimp farming. Regardless of the area, farmers in the Red River Delta in general and the study area 

in particular continue their farming methods, even after many years of crop failure due to salinity 

intrusion.  

Many studies have also emphasized that saline intrusion is becoming more and more serious, 

in addition to the impact of climate change and sea level rise. The increasing human control over the 

delta region for the purpose of rice intensification is also one of the causes leading to the worsening 

situation (Nguyen, Kamoshita et al. 2017, Phan and Kamoshita 2020, Yuen, Hanh et al. 2021). The 

strategy of shifting from large-scale interventions into nature by means of structures to agricultural 

production forms suitable for ecological conditions will be the appropriate choice to maintain 

resources. Although the Mekong Delta and the Red River Delta propose flexible land use strategies 

to limit the impact of drought and saline intrusion, the application of structural measures can affect 

the ecosystem (Yuen, Hanh et al. 2021, Hien, Yen et al. 2023). Therefore, to minimize the impact of 

saline intrusion, it is necessary to identify areas affected by saline intrusion in order to propose 

appropriate adaptation measures.  

This study was successful in constructing a map of saline intrusion distribution in a small 

study area. It has limitations related to the data used to build the machine learning model. Firstly, we 

collected 56 saline intrusion points to build the machine learning model. It is in fact necessary to 

collect more saline intrusion points in different seasons of the year. In addition, saline intrusion is 

strongly affected by climate change and sea level rise: in the future, we will try to assess the impact 

of climate change scenarios on saline intrusion, thereby supporting planners and local authorities to 

come up with appropriate adaptation solutions to minimize the impact of saline intrusion. 

 

 

5.CONCLUSION 
 

Soil salinity is considered a major environmental problem, causing significant impacts on 

agricultural production, especially in the context of climate change and rising sea levels. In recent 

years, the Mekong and Red River deltas have been seriously affected by the problem, leading to 

significant impacts on food supply in the region. Monitoring soil salinity is an essential task to support 

decision-makers or farmers in selecting appropriate crop types. Therefore, the objective of this study 

was to construct a soil salinity distribution map in the Red River Delta using machine learning and 

remote sensing. The results were as follows. 

- This study successfully built a GB model with an R² value of 0.69 to construct a soil salinity 

distribution map for the Red River Delta in general, and the Truc Ninh and Hai Hau districts in 

particular. This model can be adjusted to construct a map of soil salinity distribution in other regions 

of the world. 

- Coastal regions in the study area are more affected by the soil salinity problem, with an EC value 

greater than 3 mS/cm. This may be directly linked to climate change and sea level rise. 
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The results of this study provide a scientific basis for monitoring soil salinity in coastal regions, which 

can support decision-makers or farmers in sustainable land use planning to reduce the effects of soil 

salinity. 
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