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Abstract. Soil salinity is a major environmental problem that causes significant damage to
agricultural production, especially in the context of climate change and rising sea levels. The problem
is increasingly frequent in the Red River Delta, one of Vietnam’s rice granaries. Monitoring soil
salinity — in coastal regions in general and the Red River Delta in particular — can support decision-
makers or farmers in proposing effective strategies to reduce the impacts of soil salinity and ensure
food security. The objective of this study was to construct soil salinity distribution maps for the Red
River Delta using machine learning and remote sensing — namely gradient boosting (GB). The
statistical indices RMSE, MAE, and R? were used to evaluate the accuracy of the GB model. The
results showed that this study was successfully able to build the GB model with an accuracy of
R?=0.69. The mapping showed that coastal regions have the highest electrical conductivity value
(More than 3 mS/cm). The results of this study may prove important as tools in the selection of
appropriate types of agricultural production to ensure food security in the region, especially in the
context of climate change.
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1.INTRODUCTION

Soil salinity is a pervasive and dangerous ecological challenge, affecting agricultural
production and sustainable land development, as well as ecosystem balance, particularly in coastal
regions (Duan, Sun et al. 2025, Thangarasu, Mengash et al. 2025). The process of salinization leads
to an increase in the accumulation of soluble salts in the soil profile, disrupting the ability of plants
to access water and nutrients (Zhang, Fan et al. 2025). This challenge is increasingly serious due to
climate change, rising sea levels, and poor irrigation management (Hailegnaw, Awoke et al. 2025,
Zhou, Huang et al. 2025). According to the first global estimate in fifty years, 10.7% of land is
affected by salinity. This has direct consequences for agriculture and food production, with losses of
up to 70% of crops — particularly rice, beans, sugarcane, and potatoes. Therefore, monitoring and
assessing soil salinity are considered essential for achieving the United Nations Sustainable
Development Goals, as well as for supporting those engaged in agricultural planning to reduce the
effects of salinization.

It is now considered important to characterize and monitor the evolution of affected soils.
Traditionally, salinity has been measured using in situ methods, particularly measurement of
electromagnetic conductivity (Nguyen, Dang et al. 2025, Nguyen, Pham et al. 2025). Although this
technique is widely developed in precision agriculture for characterizing the spatial variability of
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salinity, it is limited when measuring salinity over large areas. Furthermore, this method is very
expensive, labor-intensive, and time-consuming. Therefore, more effective methods must be
developed for assessing spatial and temporal salinity efficiently and quickly. To limit the
shortcomings of the traditional method, in recent years, remote sensing technology has been used to
monitor environmental problems in general and soil salinity in particular (Metternicht and Zinck
2003, Wu, Mhaimeed et al. 2014, Gorji, Sertel et al. 2017, Thangarasu, Mengash et al. 2025). Radar
and optical techniques have proven effective in providing global information, particularly in
monitoring the soil surface (Lhissoui, El Harti et al. 2014, Jiang and Shu 2019, Taghadosi, Hasanlou
et al. 2019, Wu, Muhaimeed et al. 2019). However, optical remote sensing products are limited due
to cloud cover, and they depend on solar radiation. Radar sensors are considered reliable tools for
monitoring the soil surface under any weather and time conditions. For agricultural soil, the radar
signal is mainly dependent on surface parameters; for example, soil salinity coupled with humidity
influences the dielectric properties of soils and consequently the radar signal. In addition, with the
explosion of remote sensing data types, particularly in terms of variety, resolution and size, it is
necessary to have robust methods to process these data accurately.

For these reasons, several researchers have integrated data from remote sensing and the Drive
model. This model works mainly by learning the relationships between salinity locations and causes.
They include statistical models and machine learning models. Although statistical models have been
shown to be suitable for monitoring salinity in several regions around the world (Douaik, Van
Meirvenne et al. 2007, Fallah Shamsi, Zare et al. 2013), the nonlinear problem is considered a major
issue when using this model. This is particularly true in the context of climate change and sea level
rise, which make the soil salinity problem increasingly complex and difficult to predict. Therefore, in
recent years, some researchers have used machine learning to monitor soil salinity in coastal regions,
including methods such as support vector machine (Guan, Wang et al. 2013, Jiang, Rusuli et al. 2019),
random forest (Fathizad, Ardakani et al. 2020, Wang, Yang et al. 2021), bagging (Das, Rathore et al.
2022), and XGBoost (Zarei, Hasanlou et al. 2021, Aksoy, Sertel et al. 2024). Machine learning
algorithms can analyze large volumes of data from different sources, including satellite images and
in situ data, to estimate soil salinity. Studies have shown this method to have higher accuracy than
traditional methods. Moreover, machine learning models can improve over time thanks to their
continuous learning capacity and the updating of new data. However, a number of previous studies
have that as regions have different natural and social conditions, no model can predict problems in
all regions. Therefore, it is necessary to select models that adapt to each region of study.

The objective of this study was the monitoring of soil salinity in the Red River Delta using
machine learning and Sentinel 2A data, specifically with the Gradient Boosting algorithm. The delta
is the country’s second most important rice granary, after the Mekong Delta, and so plays a key role
in the agricultural development of Vietnam. It accounts for about 18% of the country's agricultural
land area and 15-20% of the aquaculture land area. However, in recent years, the delta has been
severely affected by saline intrusion, impacting agricultural development and food security in the
region and the wider country. Monitoring this intrusion will help inform effective solutions to
minimize the impact of this situation.

2.MATERIAL AND METHODOLOGY
2.1. Study area

Nam Dinh is a coastal province located in the Red River Delta, at the coordinates of 19054
to 20040' North latitude and 105055' to 106045' East longitude (Figure 1). The area has relatively flat
terrain, mainly composed of lowland plains and coastal plains. The terrain gradually decreases from
northwest to southeast, with an average elevation of +2m to +3m. Lowland plains account for most
of the natural area of the province. It is also an area with great potential for intensive agricultural
development, the processing and mechanical industries, and more traditional industry.

The 72 km-long coastline is fairly flat. The coastal plain has fertile land and great potential
for economic development, especially in aquaculture and fisheries. Nam Dinh has a tropical monsoon
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climate. Average annual precipitation is 1750—1800 mm. The rainy season lasts from May to October,
with the dry season from November to February. The study area is located between the downstream
reaches of two major rivers in the north of the delta: the Red River and the Day River. The tide in the
Nam Dinh region is diurnal. The average tidal range is 1.6 to 1.7 m, the highest being 3.31 m and the
lowest being 0.11 m.

Due to its geographical location, the province is affected by storms and tropical depressions,
with an average of 4 to 6 storms per year. These phenomena not only cause damage to the region's
socio-economic situation but also increase saltwater intrusion in coastal areas such as Hai Hau and
Truc Ninh, particularly in the context of climate change. Changes in climatic and hydrological
conditions, combined with the degradation of the dike and lock system, have made saline intrusion
increasingly serious in Nam Dinh province in general and in coastal areas in particular.
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Figure 1. Location of study area

2.2. Soil salinity collection

In this study, 72 soil salinity points were collected in August 2024 in Hai Hau and Truc Ninh
districts. We chose the 5-point method for salinity sampling, which means that 4 sub-samples were
taken around the main sample and the salinity of each was the average salinity of the 5. After boiling,
the samples were sealed in plastic bags and sent to the laboratory for analysis. They were cleaned of
impurities before being ground and mixed with distilled water at a ratio of 1:5 (meaning 1 g of soil
was mixed with 5 ml of distilled water). The soil and water mixture was then mixed in a thermal
oscillator for about 30 minutes to dissolve the soil in the water. The mixture was then allowed to
stand, for the liquid to be extracted, and the EC was measured using a water quality analyzer. Finally,
56 soil samples combined with influencing variables were used as input data for the machine learning
model. These data were divided into 2 parts: 70% of the data used to build the GB model and 30% to
evaluate the model’s accuracy.
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2.3.Conditioning factors

Conditioning factors are essential data when using machine learning to monitor soil salinity,
because machine learning is based on examining the relationships between salinity locations and
causes to estimate salinity. In this study, conditioning factors were collected from different sources,
such as remote sensing data and data from the Ministry of Natural Resources and the Environment.
20 conditioning factors were selected to build the machine learning model. These factors were divided
into three main groups: topographic factors (altitude, aspect, curvature, slope), hydrometeorology
factors (distance to river, rainfall), vegetation groups (NDVI, EVI, ENDVI, RVI, SAVI, GDVI),
salinity indices (S1, S2, S3, S5, S6, SI, SI1, SI2, SI3, SI4) and intensity indexes (Intl, Int2). The
topographic factors (altitude, aspect, curvature, slope) were extracted by the topographic map with
the scale of 1:50,000 (available at the Ministry of Natural Resources and Environment). 5000 / 5000.
The groups focusing on vegetation, salinity, intensity, and brightness were extracted from Sentinel
2A imagery from 2024. Annual precipitation was downloaded by https://chrsdata.eng.uci.edu/.

Topographic factors (aspect, altitude, slope, curvature) directly affect the salinity
accumulation process and hydrological flow. In particular, altitude affects the salt accumulation
capacity in the soil: low-lying areas are susceptible to saltwater intrusion from the sea to the mainland,
especially during the dry season when river levels drop and sea levels rise. In addition, low-lying
areas have poor drainage, increasing the risk of salt accumulation in the soil (Akramkhanov, Martius
et al. 2011, Shahrayini and Noroozi 2022). Aspect is an important topographical factor that greatly
affects saltwater intrusion, as it relates to soil moisture, which indirectly affects the salinity intrusion
process (Oster and Shainberg 2001). Curvature is an essential element in calculating and monitoring
saltwater intrusion, since this factor affects accumulation and surface flow: saltwater often
concentrates in areas of low curvature. Slope directly affects drainage capacity (Triki Fourati, Bouaziz
et al. 2017); steep slopes often have better drainage, which minimizes saltwater accumulation on the
surface. Conversely, areas with low slopes increase the potential for salt accumulation in the soil
(Yahiaoui, Douaoui et al. 2015, O’Brien, Almaraz et al. 2019).

Precipitation directly affects salinity intrusion in any region of the world. High rainfall reduces
the effects of salt concentrations in the soil through leaching. At the same time, low rainfall reduces
river flow, allowing salt water to penetrate deeper inland (Isidoro and Grattan 2011, Dasgupta,
Hossain et al. 2015).

Distance to river plays an important role in assessing and monitoring soil salinity, particularly
in coastal regions and deltas. Because salt water can enter rivers from estuaries, affecting soil quality,
the closer the regions are to the river, the more severe the effects of salinity are (Zhao, Feng et al.
2016, Liu, Wu et al. 2023).

The factors relating to vegetation are important in monitoring saltwater intrusion because they
reflect environmental conditions at the surface. In this case, NDVI was used to assess the level of
vegetation cover in an area. Areas with a high NDVI index often have a high vegetation density,
which indicates that the vegetation is well-developed, helping to maintain soil moisture and reduce
salt intrusion (Aldakheel 2011).

Similarly, ENDVI reflects the extent of vegetation cover, especially in areas with low soil
moisture or those affected by adverse environmental conditions such as salinity intrusion. They
determine the growth status of vegetation under changing soil and climate conditions. Areas with a
high ENDVI index represent the vegetation growing in that area. This indicates that these areas are
less affected by saltwater intrusion (Wu, Jia et al. 2021).

EVI provides information about the growth status of plants. High EVI values indicate good
vegetation growth, suggesting that these areas are less affected by salinity intrusion. A low EVI shows
that plants are not growing, which demonstrates the level of influence of salt intrusion (Lobell, Lesch
et al. 2010, Ivushkin, Bartholomeus et al. 2017).

RVI and SAVI provide information on the extent of vegetation growth, which helps assess
the extent of salinity intrusion affecting an area. Generally, saltwater intrusion reduces the ability of
plants to absorb nutrients and water. This results in poor plant growth. Therefore, areas with high
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RVI and SAVI values show that the vegetation in that area is well developed, indicating that this area
is less affected by salinity intrusion (Teshaev, Mamadaliyev et al. 2020, Zhu, Sun et al. 2021).
GDVI reflects plant health, which is indispensable for assessing and monitoring salinity intrusion.
GDVI is inversely proportional to salinity intrusion, meaning that areas with high salinity have low
GDVI values, resulting in poor plant health (Wu, Mhaimeed et al. 2014).

Salinity-related factors play an important role in assessing and monitoring saltwater intrusion
in any area because they reflect changes in surface conditions and vegetation in an area using near-
infrared, short-infrared, red, and blue wavelengths. These indices assess the extent to which salinity
intrusion affects plant growth. When the values of the S1, S2, S3, S5, and S6 indices are low, it means
that the vegetation in that area is affected by salinity intrusion (Wang, Chen et al. 2019, Wang, Peng
et al. 2021). Similarly, the SI, SI1, SI2, SI3, and SI4 indices are often used to assess plant health and
soil moisture. When these indices are high, it indicates that the soil is affected by severe salinity
intrusion, causing poor plant growth and reduced soil moisture. Assessing salinity intrusion through
plant health and soil moisture provides an overview of the status of salinity intrusion (Wang, Chen et
al. 2019, Naimi, Ayoubi et al. 2021).

The indices Intl and Int2 reflect the intensity of environmental factors affecting saltwater
intrusion. Intl provides comprehensive information on the light reflected off the Earth's surface,
which is influenced by factors such as soil moisture and texture. With this information, it is possible
to indirectly assess the level of impact of saline intrusion on an area. Int2 reflects the reflectance
properties of the soil in an area through the intensity of the visible spectrum. This index assesses the
condition and surface characteristics of an area, as well as the vegetation growth index. High Int 2
values reflect good vegetation growth and the area is less affected by salinity intrusion (Sidike, Zhao
et al. 2014, Zhang, Fan et al. 2022).

The brightness index (BI) reflects the brightness of an area calculated by combining
reflectance values from the visible and near-infrared bands. Areas with high brightness have strong
surface reflections, indicating that the area has little vegetation or low humidity. This shows that they
may be significantly affected by saltwater intrusion (Yahiaoui, Douaoui et al. 2015).

2.4.Methodology

The methodology used to construct the soil salinity map in this study was divided into three
main tasks: 1) data collection, ii) GB model construction, iii) evaluation of the proposed model
accuracy, and 1v) construction and analysis of the soil salinity map (Figure 2).
1) Data collection: Databases were divided into two types: soil salinity points and conditioning factors.
Salinity points were collected from the field mission in January 2025, during the dry season.
Conditioning factors included five groups of factors: topographic, vegetation, salinity, intensity, and
brightness. The databases were divided into two groups: one was used to construct the GB model and
the other to evaluate the model.
i1) Machine learning model construction: the machine learning model was built on the TensorFlow
platform. The accuracy of the GB model depends on the adjustment of parameters such as max depth,
learning rate, max feature, and random state. In this study, the trial-and-error method was used to
optimize the model parameters. After several trials, the model performed better with the following
parameters: n_estimators = 100, max_depth = 3, learning_rate = 0.15, loss = 'squared_error', criterion
= 'friedman_mse', max_features = 'sqrt', random_state = None.
ii1) Performance evaluation of the proposed model: The statistical indices RMSE, MAE, and R? were
used to evaluate the performance of the GB model. These indices have been used in several previous
studies.
iv) Construction and analysis of the soil salinity map: After training and evaluating the machine
learning models, the models were used to estimate salinity intrusion for the entire study area,
including Hai Hau District and Truc Ninh District. This process was carried out by assigning
influence factor values to all pixels in the study area, from which the model can calculate the salinity
value at each pixel.

22



After calculating the salinity values at each pixel, these values were used to construct a soil
salinity distribution map for the study area.

[ Remote Sensing ] { Machine learning model ]
{ Construction of Geodatabase
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| 1 £ v
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Figure 2. Methodology used for soil salinity model

2.5.Gradient boosting

GB is a machine learning model based on the principle of boosting. This technique was
developed based on the idea of progressively combining weak models, most often decision trees, to
form a powerful predictive model by training a new model that successfully predicts the errors made
by the original model (Natekin and Knoll 2013, Bentéjac, Csorg6 et al. 2021). With this idea, for any
predictive model, we can improve its accuracy by training a new predictor to predict its current errors.
This process is repeated an arbitrary number of times to continuously improve the model's accuracy
(Zhang and Haghani 2015). Gradient boosting machines consist of three main components: i) The
loss function measures the difference between predicted values and actual values. ii) Base learners
built sequentially, each focusing on correcting the errors made by the previous tree. iii) The additive
model combines the predictions of all base learners to produce the final prediction (Ayyadevara
2018). The GB model training process includes the following steps (Taieb and Hyndman 2014, Lusa
2017):
1) Model initialization: this process fits the base learner to the dataset to make an initial prediction.
i1) Iteratively fitting weak learners: the model concentrates errors made by previous learners.
ii1) Calculating residuals: the difference is measured between the actual value and the current model's
prediction.
iv) Fitting a weak learner to the residuals: the learner attempts to correct the errors of the existing
model by predicting the errors made by the previous model.
v) Updating the model: this combines the existing model using a "weighted voting" system with the
new learner. This is typically done by adding the new learner's predictions to the existing model,
scaled by a learning rate.
vi) Loss function optimization: a loss function measures the model's performance in predicting
previous errors.
Model assessment

We used three statistical indices, namely RMSE, MAE, and R?, to evaluate the accuracy of
the GB model. Of the three, RMSE and MAE presented the differences between the model values
and the realization value. The closer the value was to 0, the more perfect the model was. Meanwhile,
the R? value measures the quality of the correlation between soil salinity and conditioning factors.
This gives, among other things, an indication of the reliability of the salinity estimation based on
these factors. An R? equal to 75% would mean that 75% of the variations in soil salinity could be
explained by the conditioning factors.
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3.RESULTS

Conditioning factor analysis

The selection of appropriate conditioning factors plays an important role in accurately
estimating soil salinity because the accuracy of machine learning models depends on analyzing the
correlation between conditioning factors and soil salinity. Previous studies used various methods to
evaluate the importance of conditioning factors. For example, Zhang, Fu et al. (2023) used Pearson’s
correlation coefficients to evaluate the importance of conditioning factors. The results showed that
B6, B7, B10, B11, B4, BS5, and SI, NDSI, ENDVI, GDVI are more important for soil salinity
monitoring in Kenli district, located in Dongying City of Shandong Province in China. Habibi,
Ahmadi et al. (2020) applied sensitivity analysis of the wrapper model to evaluate the importance of
conditioning variables. The results showed that SI3, band 5, NDVI, TWI and LS were more important
in defining the soil salinity in Farmlands of Saveh Plain in the north and northeast of Qom. Han, Ge
et al. (2023) applied Pearson correlation analysis to select appropriate conditioning factors for a soil
salinity model. The results showed that BI, VSSI, CRSI, EVI, RVI, SAVI were most impactful on
soil salinity in the Songnen Plain of Da’an City.

The importance of individual conditioning factors is clearly different in each region. In this
study, we used random forest to select conditioning factors. The results showed that distance to river,
ENDVI, RVI, and rainfall were the most important factors for the soil salinity in the Edu region, with
RF values of 0.5, 0.23, 0.22, 0.19, respectively.

The Red, Thai Binh, and Ninh Co rivers are the main sources of saline intrusion, especially
during the dry season when the tide rises and the river water level decreases. Therefore, areas near
rivers will be affected by saltwater intrusion, especially in low-lying areas. ENDVI and RVI are
second in importance after distance to the river, as the study area is primarily devoted to rice
cultivation. Thus, when affected by salinity intrusion, rice either cannot grow, or it grows poorly.
This explains why the RF value is high after distance to the river. The importance of precipitation
comes fourth; precipitation plays an important role in regulating soil salinity because it helps remove
salts from the soil, especially in estuarine areas. Therefore, precipitation directly affects soil salinity.
Aspect, curvature, S6, and SI2 did not influence soil salinity. It should be noted that the model used
in this study was the statistical model; therefore, the relationships between salinity locations and
conditioning factors are more important. The soil salinity in the Red River Delta in general, and in
Hai Hau and Truc Ninh in particular, is influenced by distance to river, rainfall, RVI, and ENDVI
(Figure 3).

Curvature
SI2

S6

SI2

Sl4

S5

Int2

Intl

GDVI
Rainfall
RVI

ENDVI
Distance to river

o
©
N

0.2 0.3 0.4 0.5

Variable importance
Figure 3. Importance of conditioning factors on the soil salinity model

Modelling accuracy verification

24



Figure 4 and Table 1 present the performance of the GB model in estimating soil salinity in
the study area. The results showed that the R? value of the model was 0.69. This can be explained by
the fact that 69% of the measured point values could be accurately predicted by the proposed model.
In addition, this study used two other indices — RMSE and MAE — to evaluate the accuracy of the
model. The results showed that, for the training data, the RMSE and MAE values reached 0.02 and
0.04, while for the validation data, these values increased to 0.3 and 0.2. Overall, even though the
model still needs improvement compared to some previous studies, the model in our study remains
effective (Wang, Xue et al. 2020, Shi, Hellwich et al. 2021).
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Table 1: Model performance for soil salinity model
Model Training dataset Validation dataset
RMSE MAE R2 RMSE MAE R2
GB 0.02 0.04 0.98 0.3 0.2 0.69

Soil salinity mapping

Figure 5 shows the distribution of EC values in the study area, which is considered a very
important value in the assessment of salinity intrusion. It can be seen that coastal areas are strongly
affected by saline intrusion with EC values greater than 3 mS/cm. Meanwhile, further inland, EC
values decrease to less than 3.

In deltaic areas in general and in the study area in particular, salinity intrusion is a natural
process, but it is also affected by many other factors, such as agricultural production activities and
unreasonable groundwater exploitation. This process affects the relationship between river water and
seawater. The map shows the study area clearly divided into three zones: red, yellow, and green;
salinity decreases from red to green. In red zones, EC values exceed 3; these are concentrated in
coastal areas. This area is heavily affected by storms, sea level rise, tides, and water exploitation in
the upper Red River basin. Therefore, in some areas, instead of growing rice, people work in
aquaculture.

As you move further inland, EC values decrease and become yellow. Based on field surveys
conducted in 2024 and 2025, it can be seen that while the yellow areas can grow rice, rice yields have
declined, and many areas have switched from growing rice to growing more salt-tolerant crops. The
further inland you go, the more significantly salinity decreases. These areas focus on growing rice.
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Figure 5. Soil salinity maping product by GB in the study area
4.DISCUSSION

The Red River Delta plays an important role in the socio-economic development of Vietnam,
with its population of more than 20 million, of whom 66% of the workforce relies on agriculture and
aquaculture. However, in recent years, the region has been strongly affected by drought and saltwater
intrusion, especially in the context of climate change. This has seriously affected the food security of
the whole country (Phan and Kamoshita 2020, Truc, Mihova et al. 2020). According to a report by
the Ministry of Agriculture and Environment, the dry season flow on the Red River-Thai Binh River
system has decreased sharply. Since 2001, the water level on the Red River in Hanoi from December
to May is often 0.5 to 1.1 m lower than the average level of many years. The water flow downstream
has decreased. Also, the water level of rivers in the coastal plains has dropped, combining with rising
sea levels and high tides to cause saltwater intrusion to spread further into the area downstream.
Therefore, research and monitoring of saline intrusion in the Red River Delta is necessary to support
planners and farmers in choosing appropriate agricultural production types (Nguyen, Renaud et al.
2019, Phan and Kamoshita 2020).

In the delta, solutions to mitigate saline intrusion mainly focus on upgrading irrigation
infrastructure systems such as sea dikes, river dikes and sluice systems. In addition, adaptation
measures also include changes in agricultural production structures such as changing crop calendars
and effectively managing irrigation systems (Nguyen, Kamoshita et al. 2017). Other activities include
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planting mangroves or converting coastal rice fields affected by saline intrusion into aquaculture
systems, which has been achieved by many households (Nguyen, Renaud et al. 2019, Phan and
Kamoshita 2020). As the results show, in areas far from the sea, saline intrusion is not a problem;
only a small number of some areas along the Red River are affected by salinity. Many households in
this area have raised their fields with sand from the Red River to minimize saline intrusion. Many
households have cultivated rice-vegetable systems, in which rice is mainly used for family
consumption, while vegetable prices may determine whether to grow vegetables or other crops. When
vegetable prices decrease, they switch to other crops with greater economic benefits (Linh, Linh et
al. 2012, Nguyen, Kamoshita et al. 2017).

In the middle areas, affected by moderate saline intrusion, many households often switch to
fish or soft-shell turtle farming. Some households switch from rice cultivation to garden-pond-cage
systems when salinity increases. Along coastal areas, households may switch from fish farming to
shrimp farming. Regardless of the area, farmers in the Red River Delta in general and the study area
in particular continue their farming methods, even after many years of crop failure due to salinity
intrusion.

Many studies have also emphasized that saline intrusion is becoming more and more serious,
in addition to the impact of climate change and sea level rise. The increasing human control over the
delta region for the purpose of rice intensification is also one of the causes leading to the worsening
situation (Nguyen, Kamoshita et al. 2017, Phan and Kamoshita 2020, Yuen, Hanh et al. 2021). The
strategy of shifting from large-scale interventions into nature by means of structures to agricultural
production forms suitable for ecological conditions will be the appropriate choice to maintain
resources. Although the Mekong Delta and the Red River Delta propose flexible land use strategies
to limit the impact of drought and saline intrusion, the application of structural measures can affect
the ecosystem (Yuen, Hanh et al. 2021, Hien, Yen et al. 2023). Therefore, to minimize the impact of
saline intrusion, it is necessary to identify areas affected by saline intrusion in order to propose
appropriate adaptation measures.

This study was successful in constructing a map of saline intrusion distribution in a small
study area. It has limitations related to the data used to build the machine learning model. Firstly, we
collected 56 saline intrusion points to build the machine learning model. It is in fact necessary to
collect more saline intrusion points in different seasons of the year. In addition, saline intrusion is
strongly affected by climate change and sea level rise: in the future, we will try to assess the impact
of climate change scenarios on saline intrusion, thereby supporting planners and local authorities to
come up with appropriate adaptation solutions to minimize the impact of saline intrusion.

5.CONCLUSION

Soil salinity is considered a major environmental problem, causing significant impacts on
agricultural production, especially in the context of climate change and rising sea levels. In recent
years, the Mekong and Red River deltas have been seriously affected by the problem, leading to
significant impacts on food supply in the region. Monitoring soil salinity is an essential task to support
decision-makers or farmers in selecting appropriate crop types. Therefore, the objective of this study
was to construct a soil salinity distribution map in the Red River Delta using machine learning and
remote sensing. The results were as follows.

- This study successfully built a GB model with an R? value of 0.69 to construct a soil salinity
distribution map for the Red River Delta in general, and the Truc Ninh and Hai Hau districts in
particular. This model can be adjusted to construct a map of soil salinity distribution in other regions
of the world.

- Coastal regions in the study area are more affected by the soil salinity problem, with an EC value
greater than 3 mS/cm. This may be directly linked to climate change and sea level rise.
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The results of this study provide a scientific basis for monitoring soil salinity in coastal regions, which
can support decision-makers or farmers in sustainable land use planning to reduce the effects of soil
salinity.
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